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Allodynia and hyperalgesia in neuropathic pain: 
clinical manifestations and mechanisms
Troels S Jensen, Nanna B Finnerup

Allodynia (pain due to a stimulus that does not usually provoke pain) and hyperalgesia (increased pain from a 
stimulus that usually provokes pain) are prominent symptoms in patients with neuropathic pain. Both are seen in 
various peripheral neuropathies and central pain disorders, and aff ect 15–50% of patients with neuropathic pain. 
Allodynia and hyperalgesia are classifi ed according to the sensory modality (touch, pressure, pinprick, cold, and heat) 
that is used to elicit the sensation. Peripheral sensitisation and maladaptive central changes contribute to the 
generation and maintenance of these reactions, with separate mechanisms in diff erent subtypes of allodynia and 
hyperalgesia. Pain intensity and relief are important measures in clinical pain studies, but might be insuffi  cient to 
capture the complexity of the pain experience. Better understanding of allodynia and hyperalgesia might provide 
clues to the underlying pathophysiology of neuropathic pain and, as such, they represent new or additional endpoints 
in pain trials.

Introduction
Neuropathic pain is an umbrella term for a series of 
diff erent conditions caused by a lesion or disease of the 
parts of the nervous system that usually signal 
somatosensory information.1 A range of disorders of the 
peripheral nervous system—such as postherpetic 
neuralgia, painful nerve lesions, trigeminal neuralgia, 
postamputation pain—and a series of neuropathies are 
included under the term. Additionally, CNS disorders 
such as stroke, spinal cord injury, and multiple sclerosis 
can have pain as an important symptom. Diseases 
causing neuropathic pain therefore vary substantially 
both in terms of anatomical location and cause. Despite 

this diversity, neuropathic pain disorders have common 
clinical characteristics, including some, but not necess-
arily all, of the following: pain in an area with partial or 
complete sensory loss; diff erent types of evoked pain; 
specifi c descriptors such as burning pain; increased pain 
after repetitive stimulation; and pain persisting after 
stimulation.1–4 Two particularly bothersome and 
prominent symptoms in diff erent types of neuropathic 
pain are allodynia (ie, pain elicited by a stimulus that 
normally does not cause pain) and hyperalgesia (ie, an 
increased pain response produced by a stimulus that 
normally causes pain; fi gure 1).5

In clinical pain trials, the intensity and degree of pain 
relief represent important outcome measures. However, 
these two measures might not capture all aspects of pain, 
particularly not with the development of new compounds 
targeting specifi c occurrences of pain. Current pain 
treatment is not satisfactory. An elaborate and detailed 
assessment of neuropathic pain might help to identify 
subsets of patients who respond to a particular pain 
treatment.4,8–10 Allodynia and hyperalgesia are symptoms 
and signs that might serve as readouts for pain and thus 
contribute to improved delineation of neuropathic pain.4,8–10

This Review presents an overview of allodynia and 
hyperalgesia in neuropathic pain conditions, including 
their clinical manifestations, underlying mechanisms, 
and potential value as novel outcome measures.

Epidemiology of allodynia and hyperalgesia in 
neuropathic pain
Allodynia is Greek for other (allo) pain (odynia) 
according to the International Association for the Study 
of Pain.5 The authors of a systematic review11 showed 
that the prevalence of pain associated with pre-
dominantly neuropathic pain descriptors in question-
naire studies ranged from 7% to 18%, whereas studies 
based on diagnostic codes reported lower rates of 
neuropathic pain of 1% to 2%. The authors additionally 
stressed the variability in the prevalence of neuropathic 
pain associated with specifi c conditions; the estimated 
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Figure 1: Stimulus–response function illustrating allodynia and hyperalgesia 
following nerve damage 
The blue line illustrates the stimulus–pain relationship in normal skin, whereas 
the red lines represent the relationship in skin following nerve damage. Patterns 
of sensory abnormalities can diff er with varying degrees of allodynia and 
hyperalgesia present at diff erent test sites within the aff ected region in a patient 
with neuropathic pain. The stimulus–response function depends on the degree 
of nerve damage and location of the stimulation. In some sites, the stimulus 
response is shifted to the left, resulting in a lower stimulus intensity needed to 
evoke a painful response and with a steep slope, resulting in a high gain in the 
system (red solid line). In other areas dominated by loss of sensitivity, the 
stimulus–response function can be shifted to the right (red dashed line). Because 
of a steep slope, the result at suprathreshold stimuli might still be hyperalgesic 
responses. There is an overlap between allodynia and hyperalgesia, which are 
both part of a general hypersensitivity to a particular sensory stimulus, but the 
evoked sensory experience might shift so that one sensory modality is perceived 
diff erently—eg, touch as burning pain, heat as cold pain.6,7 
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prevalence of, for example, painful diabetic poly-
neuropathy ranged from 15 to 72 per 100 000 person-
years. The main diffi  culty in epidemiological studies of 
pain is the subjective nature of the symptoms, preventing 
proper validation studies from being done.11 The 
prevalence of allodynia in neuropathic pain is likewise 
diffi  cult to assess. In a questionnaire study of more than 
1600 patients with painful diabetic neuropathy,12 18% 
reported that light touching was painful, and 14% 
reported that cold or heat was occasionally painful. Only 
47% with postherpetic neuralgia had touch-evoked 
allodynia, although this is usually reported to be present 
in at least 70% of cases.13 On the basis of quantitative 
sensory testing in 1236 patients with diff erent 
neuropathic pain syndromes, brush-evoked allodynia 
was present in 20% of all patients, 12% of patients with 
painful polyneuropathy, and 49% of patients with 
postherpetic neuralgia.14 In another study of 482 patients 
with diff erent causes of neuropathic pain,15 55% had 
brush-evoked allodynia, whereas pain evoked by contact 
with cold objects was reported in 31% of patients, with 
pressure-evoked pain reported in 52% of patients. Any 
pain evoked by brush, pressure, or cold stimuli was 
present in 52% of patients with painful diabetic 
polyneuropathy and 92% of patients with postherpetic 
neuralgia. The presence of evoked phenomena is 
therefore not only dependent on the patients examined, 
but also on the criteria and methods used to assess these 
evoked responses.

Clinical assessment and manifestations of 
allodynia and hyperalgesia
Theoretically, allodynia can be defi ned as a painful 
response to a non-nociceptive stimulus—ie, one not 
encoded by nociceptors16—but this defi nition cannot be 
used in the clinical setting because it would be impossible 
to establish whether a stimulus is capable of activating 
nociceptors in the individual patient. Therefore, the 

clinical terms allodynia and hyperalgesia need to be 
defi ned according to the sensation experienced after a 
stimulus that would normally produce either no pain or 
pain that can be tested in a non-aff ected body part, usually 
the contralateral part.5 The clinical assessment of allodynia 
and hyperalgesia includes examination of trigger points, 
mapping of the area of abnormality, and determination of 
the intensity of hypersensitivity. Simple bedside tests 
include responses to cotton swab, fi nger pressure, 
pinprick, cold, and warm stimuli—eg, thermorollers kept 
at 20°C and 40°C, respectively (table).17,18

More detailed but time-consuming testing includes 
laser stimuli and quantitative sensory testing,17,18 with 
the use of monofi laments, pressure or pinch algo-
meters, and thermotest equipment. Sensory profi les 
including diff erent aspects of allodynia and hyperalgesia 
have been described.14 The clinical signifi cance of these 
profi les is still unclear, mainly because of an absence of 
specifi c and selective compounds that can address the 
potential underlying mechanisms.19,20 The paradoxical 
presentation of areas of hyperalgesia and sites with 
sensory loss can pose diffi  culty regarding where the 
assessment should be done. Examination at 
hyperalgesic sites might mask the presence of a 
potential sensory loss area (fi gure 2), whereas 
examination within a hypoalgesic area might preclude 
the identifi cation of hypersensitivity. In these situations, 
mapping of sensory abnormalities is a way to obtain 
additional information.

The distribution of diff erent pain types on a phantom 
map represents an important initial step for pain 
assessment (fi gure 2). The area can be quantitated and the 
evoked intensities and qualities measured both before and 
after an intervention. Such procedures are useful—eg, 
when recording the eff ect of drugs. Automatic drawing 
systems have been proposed, which might likewise be of 
value for more accurate measurements. An essential 
element of neuropathic pain is a lesion of the aff erent 

Bedside assessment Experimental assessment Experimental readout Clinical examples

Mechanical

Dynamic mechanical Cotton bud, painter’s 
brush, or cotton ball

Brush (SENSElab 05; Somedic, 
Hörby, Sweden), speed  1–2 cm/s

Evoked pain intensity; area of 
abnormality

PHN; neuropathies; trigeminal 
neuralgia; central pain

Punctate Prick with stick or pin; 
monofi lament

Monofi lament stimulus Evoked pain intensity; pain 
threshold; area of abnormality

Traumatic nerve injury; 
trigeminal neuralgia

Static (superfi cial) Gentle fi nger pressure 
applied to skin

Pressure algometer, fi xed rate Evoked pain intensity; pain 
threshold; area of abnormality

PHN; neuropathies: traumatic 
nerve injury

Static (deep) Finger pressure applied to 
skin and underlying tissue

Pressure algometer, fi xed rate Evoked pain intensity; pain 
threshold; area of abnormality

CRPS; traumatic nerve injury

Thermal

Cold Thermoroller kept at 20°C, 
cold metal or glass object

Thermotest Evoked pain intensity; pain 
threshold; area of abnormality

Chemotherapy neuropathy; 
post-stroke pain

Heat Thermoroller kept at 40°C, 
warm metal or glass object

Thermotest; laser stimulus Evoked pain intensity; pain 
threshold; area of abnormality

Erytromelalgia; burning mouth 
syndrome

PHN=postherpetic neuralgia. CRPS=complex regional pain syndrome. 

Table: Assessment of allodynia and hyperalgesia 
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transmission system. Depending on the particular type of 
aff erent fi bres implicated, a corresponding loss of the 
respective sensory function is seen. As a result of the 
nerve injury, maladaptive changes occur in cell structure, 
function, biochemical properties, and connections. These 
neuroplastic changes take place peripherally at the injury 
site and in the CNS (fi gure 3). The clinical manifestation 
of these maladaptive changes includes the development of 
pain in the innervation territory of the damaged nerve and 
allodynia or hyperalgesia extending beyond the 
innervation territory of the damaged nerve. On the basis 
of the symptom description, a distinction is often made 
between spontaneous (stimulus-independent) and evoked 
(stimulus-dependent) pain.2,4,21–23 This concept has been 
challenged by Bennett,24 who argues that the two types of 
pain are hard to separate and that spontaneous 
neuropathic pain might represent unrecognised allodynia 
or hyperalgesia due to subliminal internal or external 
stimuli that occur during daily life. He postulates that 
repeated episodes of such stimuli might summate and 
generate sensitisation. This hypothesis is diffi  cult to either 
prove or refute. Nevertheless, the separation into stimulus-
dependent and stimulus-independent pain is clinically 
useful because it is easy to identify on the basis of the 
patients’ descriptions and, as shown below, is probably 
important in clarifi cation of potential mechanisms of 
pain. Importantly, although hyperexcitability in the pain 
pathways can give rise to allodynia and hyperalgesia, these 
symptoms and signs do not always show a peripherally 

driven neuronal hyperexcitability, but might be 
manifestations of a psychological disturbance too.25 
Moreover, allodynia and hyperalgesia are not limited to 
neuropathic pain, but can be part of almost any type of 
chronic pain condition, ranging from simple local 
soreness in patients with osteoarthritis, sensitivity of facial 
skin in a patient with a migraine attack, and sensitivity of 
the abdominal wall in a patient with peritonitis, to 
generalised hypersensitivity in patients with fi bromyalgia. 
Allodynia and hyperalgesia can in some, but not all, 
instances represent hyperexcitability in the nervous 
system, and it is important to note that allodynia and 
hyperalgesia are clinical terms that do not imply a 
mechanism.5 Allodynia and hyperalgesia are classifi ed 
according to the sensory modality used to elicit pain—ie, 
mechanical (dynamic, punctate, and static) and thermal 
(cold and heat) stimuli, which are seen in various 
peripheral nerve disorders, such as trigeminal neuralgia,26 
peripheral nerve injuries,27 and postherpetic neuralgia,28 as 
well as in central neuropathic pain conditions, such as 
central post-stroke pain,6 multiple sclerosis,29 spinal cord 
injury,30 and syringomyelia.31 The clinical presentation can 
be quite diff erent in these conditions (fi gure 4). There has 
been interest in the predictive value of sensory changes 
for the development of pain. Studies have found that 
sensory hypersensitivity precedes the development of 
some neuropathic pain conditions. For example, after 
spinal cord injury30,32 and central post-stroke pain (Klit and 
colleagues, unpublished), early sensory hypersensitivity 
predicted the development of central pain, suggesting that 
central neuronal hyperexcitability develops gradually and 
precedes the development of spontaneous central pain. In 
peripheral neuropathic pain, early hyperaesthesia has 
been found to increase the likelihood of persistent pain—
eg, after surgery.8

Mechanical allodynia and hyperalgesia
Three types of mechanical allodynia and hyperalgesia are 
usually described: dynamic mechanical allodynia evoked 
by light touch; punctate allodynia and hyperalgesia  
evoked by punctate skin stimulation with a pin or 
monofi lament (400 mN); and static allodynia and 
hyperalgesia provoked by pressure to skin or deep 
tissue.33,34 On the basis of experimental studies using 
capsaicin and freezing lesions, Kilo and colleagues34 
described a fourth type, termed impact hyperalgesia, 
elicited in the primary hyperalgesic area by shooting 
small bullets against the freezing zone. To what extent 
this type of hyperalgesia is implicated in clinical 
neuropathic pain remains to be seen. Most investigators 
have focused their attention on dynamic mechanical 
allodynia and punctate hyperalgesia, probably because 
they are most obvious to the patient and clinician.

Dynamic mechanical allodynia 
Dynamic mechanical allodynia in neuropathic pain is 
suggested to be perceptually similar to the same disorder 

Figure 2: Mapping of allodynia and hyperalgesia
An example of areas of allodynia and hyperalgesia after a lesion of the intercostobrachial nerve during complete 
axillary lymph node excision in a patient treated for malignant melanoma. (A, B) Black line: spontaneous pain. 
Green line: decreased sensation to touch (solid) or pinprick (dotted). Blue line: dynamic mechanical allodynia. Red 
line: pinprick hyperalgesia. (B) Black dotted line: quantitative sensory examination. 
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seen in the secondary hyperalgesic area after capsaicin 
application, with similar temporospatial stimulus 
parameters and pain descriptors.35–37 This similarity 
suggests, but does not prove, that the mechanisms 
underlying dynamic mechanical allodynia in some 
neuropathic pain states are similar to those seen after 
experimental capsaicin application, which produces a 
zone of primary hyperalgesia at the site of injury and 
secondary hyperalgesia extending beyond the injury 
site.35,38 Stimulus-dependent pain is, by nature, only 

present in areas with preserved ascending sensory 
pathways and, consequently, patients with allodynia and 
hyperalgesia often have fewer sensory defi cits compared 
with patients with spontaneous pain only.28,39–41 In patients 
with partial nerve injury, a defi cit to one or several 
modalities can be masked by an associated hyper-
sensitivity in intact or regenerating nerve fi bres in the 
same or adjacent territories.42

Dynamic mechanical allodynia is generally accepted to 
be mediated by low-threshold Aβ fi bres in most 
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Figure 3: Mechanism for development of central sensitisation
(A) Diagram of noxious (C fi bres) and non-noxious (Aβ fi bres) input to second-order projection neurons in the spinal cord. (B) Following stimulation of C fi bres (red area)—eg, by capsaicin amplifi cation 
of spinal cord signalling systems—central sensitisation develops and non-noxious stimulation outside the injured area is suffi  cient to elicit a painful sensation. (C) After injury to nerves, second-order 
neurons are excited by abnormal and increased input form the periphery, causing central sensitisation and non-noxious input from damaged or undamaged Aβ fi bres, which may now elicit activity 
suffi  cient to cause pain. Because of injury, there are also areas with a loss of sensitivity (yellow areas). (D) Additionally, a change in the balance of descending inhibitory (–) and facilitating (+) pathways 
from the brain to the spinal cord can aff ect dorsal horn neuronal activity and can therefore cause central sensitisation. Red represents sensitisation of fi bres and blue represents normal fi bres in A–C. 

Figure 4: Three diff erent neuropathic pain conditions with separate and distinguishable types of allodynia and hyperalgesia
Orange areas: sensory loss to tactile stimuli. Red-hatched areas: dysaesthesia to tactile stimuli. Red areas: pain. Dots: tactile trigger zones for neuralgic attacks. (A) Trigeminal neuralgia is characterised 
by fl ashes of pain in the face evoked from trigger points (dots) in the trigeminal innervation area (left). Non-noxious stimuli, such as a wind blowing, touching stiff  hairs on the face, chewing, and 
tooth brushing, and more rare noxious mechanical stimuli, can elicit episodes of pain (right). Trigger zones are concentrated around the mouth, lips, and nose, and diminish in frequency more laterally. 
Their distribution corresponds to the onion peel-like distribution of the facial somatotopic representation in the sensory nucleus of the trigeminal nerve. Damage to myelinated fi bres, as seen, for 
example, by compression of the trigeminal root by vessels or a plaque from multiple sclerosis, has been suggested to be related to the presence of paroxysmal pain. By contrast with other neuropathic 
pain conditions, there is no clinically demonstrable sensory loss present in trigeminal neuralgia. Another distinguishing feature of trigeminal neuralgia is the refractory period after a period of 
paroxysm, which can last up to several minutes, where either no or only a weak paroxysm can be elicited. This could, in part, explain the pain-free episodes seen in trigeminal neuralgia by contrast with 
other types of compression neuropathies, in which longer-lasting or even persistent areas of allodynia or hyperalgesia are present. (B) Nerve injury pain is a common cause of neuropathic pain 
associated with allodynia. A series of conditions qualify, such as post-traumatic nerve injury following surgery, traumatic injuries (eg, amputations), nerve compressions (eg, carpal tunnel syndrome), 
and degeneration after infl ammation (eg, postherpetic neuralgia). In these cases, the clinical picture is characterised by negative symptoms, with simultaneous sensory loss (left) surrounded by areas 
of allodynia in the painful area (right). The allodynic area can be mapped and specifi ed for each sensory modality. The illustrated case shows an iatrogenic lesion of the infrapatellar branch of the 
saphenous nerve that is damaged following arthroscopy of the knee joint. (C) Central neuropathic pain is pain due to a lesion or disease of the classic pain signalling systems in the CNS—ie, the 
spinothalamic system. As for nerve injury pain, there are negative symptoms, but in this case, temperature and pinprick sensitivity are specifi cally aff ected, which are sensory modalities conveyed via 
the spinothalamic tract (left). In the same area, there are positive symptoms and signs with spontaneous pain and allodynia (right), which might be deep or cutaneous, and include one or several 
sensory qualities. The classic examples are spinal cord injury pain, multiple sclerosis, and post-stroke pain. Here, the overlap of attenuation of spinothalamic functions (temperature and pinprick) is 
associated with dynamic allodynia. In the illustrated case, the development of pain occurred after a middle cerebral artery occlusion with an infarct in the right hemisphere, giving rise to a right-sided 
hemiparesis, dysaesthesia in the left hemibody, and spontaneous pain in the left arm.

A B C
Left Right Left Right Left Right
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instances. In a classic investigation by Gracely and 
colleagues,43 a local anaesthetic block of nerve injury 
trigger points attenuated both continuing pain and 
brush-evoked allodynia, with a return of both pain and 
allodynia as the anaesthetic eff ect disappeared. Moreover, 
by selectively blocking A fi bre input in patients with 
nerve injury, dynamic mechanical allodynia disappeared, 
whereas burning pain mediated by continuing C fi bre 
activity remained.35 Studies of reaction times in dynamic 
mechanical allodynia confi rm that large myelinated 
fi bres mediate the disorder.44 The Aβ input might be 
necessary not only for the presence of allodynia, but also 
for the quality of the pain felt. A gradually increasing 
compression block of Aβ input in patients with nerve 
injury pain showed that the modality of the evoked 
sensation changed from dynamic mechanical allodynia 
to dynamic mechanical dysaesthesia, which suggests 
that dysaesthesia and allodynia are part of the same 
spectrum, and that both are orchestrated by the degree 
of input from non-noxious mechanosensitive fi bres.45

Small-fi bre input seems to be an important driver of 
allodynia. In experimental studies using capsaicin or 
mustard oil to elicit pain and hyperalgesia in human 
volunteers and patients with nerve injury pain,35 elicited 
burning pain and dynamic mechanical allodynia 
increased after warming of the skin. The authors of 
another study46 found that preservation of thermal pain 
pathways (estimated using laser-evoked potentials) rather 
than large fi bre pathways (estimated using nerve 
conduction recordings) were more common in patients 
with peripheral neuropathy and dynamic mechanical 
allodynia. Whether or not the testing was done in the area 
of dynamic mechanical allodynia was not certain, but the 
authors do suggest a role for at least partly preserved and 
sensitised thin fi bres. Dynamic mechanical allodynia 
might, in some cases, be mediated through unmyelinated, 
low-threshold mechanosensitive aff erents that signal the 
pleasantness of gentle skin stroking,47,48 although the role 
of these fi bres in patients with neuropathic pain is still 
unsettled. In central pain conditions such as central post-
stroke pain, tactile allodynia has been shown to occur in 
patients with disturbances of thermal pathways but 
spared tactile signalling pathways,49 which suggests that 
disruption of the thermal input is necessary for the 
development of pain.

Punctate allodynia and hyperalgesia
Punctate allodynia and hyperalgesia present in the 
innervation territory of the aff ected nerve usually involve 
a larger area compared with dynamic mechanical 
allodynia34,50,51 and depend on central changes in addition 
to peripheral input.52 Based on diff erential nerve fi bre 
blocks by compression, punctate hyperalgesia is driven 
by activity in Aδ fi bres53 and a minor input from C fi bres, 
by contrast with the Aβ-mediated dynamic mechanical 
allodynia.34 Various animal models of nerve injury pain 
use a monofi lament stimulation method to evoke motor 

responses,54 which is similar to that used in human 
studies to examine for punctate hyperalgesia. 

Static evoked allodynia or hyperalgesia
Static (ie, pressure) evoked allodynia or hyperalgesia is 
another important, but less recognised, form of allodynia 
and hyperalgesia. Static hyperalgesia is phenomenologically 
diff erent from dynamic and punctate allodynia and 
hyperalgesia produced by chemical irritants such as 
capsaicin or mustard oil. Static allodynia is generally short 
lasting and confi ned to the primary hyperalgesic area 
(primary hyperalgesia), whereas dynamic and punctate 
hyperalgesia extends beyond this area (secondary 
hyperalgesia). Based on nerve compression blocks, static 
allodynia55—by contrast with dynamic mechanical 
allodynia and similar to heat hyperalgesia56—is mediated 
by sensitised peripheral nociceptors.33–35,43–45,55 Importantly, 
the authors of a clinical study32 showed the simultaneous 
presence of static and dynamic allodynia in 28 patients 
with nerve injury, and found that these two signs 
represented distinct and separable types of sensory 
hypersensitivity. The clinical signifi cance of static 
hyperalgesia has been mentioned only briefl y in the 
literature.17 However, deep (static) mechanical hyperalgesia 
has subsequently been noted in other peripheral 
neuropathic pain conditions, such as traumatic nerve 
injuries39,57 and diabetic neuropathies.12,58

Molecular mechanisms of mechanical allodynia and 
hyperalgesia 
Several molecular mechanisms underlie neuronal 
hyperexcitability and allodynia, with much knowledge 
gained from preclinical studies, but a detailed description 
is beyond the scope of this Review. After injury, cytokines, 
nerve growth factors, and other algogenic substances 
invade the injured tissue area, which contributes to a 
change in the expression and traffi  cking of non-specifi c 
ion channels and specifi c sodium and potassium 
channels.59–61

Spontaneous ectopic activity in nerve endings or along 
the axon is important for spontaneous pain, but might 
also be a driving factor of allodynic responses. After nerve 
injury, the expression of sodium channels is changed, 
particularly the isoforms NaV1·3, NaV1·7, NaV1·8, and 
NaV1·9.4,60,62 Other channels in the development of ectopia 
are the neuronal hyper polarisation-activated cation 
channels,63,64 which, together with calcium channels, are 
important to neurons to display repetitive fi ring patterns. 
This peripherally increased input—whether caused by 
sensitised nociceptors or ectopia—is an important driving 
force for central sensitisation and its clinical expression 
with spread of pain outside the damaged nerve 
innervation territory, the increase of pain despite the 
same stimulus intensity, and the persistence of pain after 
stimulation has stopped.

Many signalling molecules are implicated in the 
sensitisation and include several glutamate receptor 
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types, substance P, proinfl ammatory cytokines, tyrosine 
kinase B receptors, and diff erent protein kinases.4,9,59

Another potential mechanism underlying mechanical 
allodynia is a phenotypic switch in which Aβ fi bres start 
to express neuropeptides such as calcitonin-gene-related 
peptide, substance P, and the neurotrophin BDNF, which 
are usually only expressed by small fi bres.65,66 Postsynaptic 
changes probably contribute to allodynia too. These 
include increased activity at NMDA, AMPA, and metabo-
tropic glutamate receptors, diff erent kinases, and other 
signalling systems that increase synaptic strength.4

Reduction of normal GABA and glycine inhibition of 
second-order neurons will probably be involved too. 
Downregulation of potassium-chloride exporters leads to 
a shift in the transmembrane anion gradient and a net 
excitation rather than an inhibition of second-order 
neurons.67,68 A range of molecular mechanisms is prob-
ably involved in these sensitisation phenomena and the 
activation of nociceptive spinothalamic pathways by 
normally non-painful stimuli. Understanding the contri-
bution of each of these mechanisms to the diff erent 
symptoms and signs seen in individual neuropathic pain 
conditions and individual patients remains a future 
challenge.

Thermal allodynia and hyperalgesia
Cold perception and allodynia 
The authors of early psychophysical studies in human 
beings showed that the perception of cold can usually be 
separated into three categories: perception of innocuous 
cool temperatures when the skin is cooled by between 
0·5°C and 1·0°C in the most sensitive areas; cold pain 
sensation that is perceived in the range of 30–15°C; and a 
freezing or stinging cold pain sensation at very cold 
temperatures, usually less than 0°C (separable from cold 
pain).69–71 The perception of innocuous and noxious cold 
is mediated by unmyelinated (C) and thinly 
myelinated (Aδ) fi bres. Diff erential blocks of A fi bres in 
human volunteers have shown that the sensitivity to 
innocuous cold is mediated by Aδ fi bres,72 although 
C fi bres have also been shown to respond to innocuous 
cold.73,74 The existence of two types of neurons has been 
suggested: a low-threshold cool type, responding to 
activating temperatures close to 30°C, and a high-
threshold cold nociceptor neuron population, activated at 
temperatures less than 20°C.75

Cold allodynia is a frequent fi nding in neuropathic 
pain, but it is also seen in patients with permanent 
sequelae after cold injuries76 and in ciguatera, a 
neurological disease caused by consumption of cigua-
toxins, which are a group of compounds that accumulate 
in some tropical and subtropical fi sh.77 The character of 
cold allodynia diff ers between patients. For example, it 
might be perceived as a deep aching and burning 
sensation in a patient with small-fi bre neuro pathy,78 a 
pricking sensation in a patient with acute oxaliplatin 
neuropathy, or an intense cold or burning sensation in 

a patient with central pain. Patients with cold injury 
have normal detection thresholds, but report pain at 
non-painful cold temperatures. By contrast with 
patients with neuropathic pain, those with cold injury 
tolerate further cooling from the pain threshold.76 Cold 
allodynia is often the sole fi nding in patients with cold 
injury, by contrast with those with neuropathic pain, 
who might have additional signs of sensitisation.79 
These diff erences in the clinical expression of cold 
hypersensitivity indicate diff erences in the underlying 
neurophysiological mechanisms and suggest that 
phenotyping of patients based on quantitative sensory 
testing should be coupled with a more detailed 
description and analysis to achieve a more distinct 
classifi cation (panel).

Molecular mechanisms of cold sensation 
The exact cellular and molecular mechanisms of cold 
sensation are not wholly understood. However, both 
voltage-gated ion channels and members of the transient 
receptor potential (TRP) ion channel family are 
associated with the transduction of cold sensation and 
cold-related pain.84–86

TRPM8 and TRPA1 are two cation channels expressed 
in trigeminal and dorsal root ganglion cells that both 
respond to cooling temperatures.87 Essentially, TRPM8 is 
exclusively expressed in neurons that participate in cold 
signalling. Low-threshold cold cells expressing TRPM8 
have been suggested to activate a postsynaptic channel 
resulting in a cool sensation, and high-threshold cells88 

Panel: The thermal grill illusion as a model for cold allodynia

After studies by Thunberg80 in the 19th century on what was termed the thermal grill 
illusion, there has been an interest in mechanisms giving rise to thermal allodynia. The 
thermal grill illusion showed how simultaneous application of innocuous cold and warm 
stimuli to skin elicited a warm sensation or a noxious sensation, described as a “cold 
burning pain sensation” or the thermal grill illusion. Diff erent theories have been 
proposed to explain the thermal grill illusion.

Cold neurons, which are exclusively activated by cool stimuli, have a lower activity during 
the illusion stimuli compared with when a real cold stimulus is present.81 In the polymodal 
neurons termed heat-pinch-cold cells, the neuronal fi ring pattern was similar for pure 
cold or illusion conditions. On the basis of these fi ndings, investigators postulated that 
the thermal grill illusion represents an unmasking phenomenon in which the 
simultaneous presentation of cool and warm stimuli disinhibits activity in cold-sensitive 
polymodal lamina 1 spinothalamic neurons (fi gure 5).7,82 Functional imaging has shown 
that the thermal grill activates the anterior cingulate cortex, which is frequently excited 
by noxious stimuli, whereas separate presentation of warm and cold stimulation alone 
does not activate the anterior cingulate cortex.82 This could show an imbalance between 
the activity of cold-specifi c and cold-nociceptive cells, resulting in diff erential excitation 
of the insular cortex and medial and lateral aspects of the thalamus.

Few investigators have tried to alter the illusion phenomena pharmacologically. However, 
studies by Bouhassira and his group83 have shown that the paradoxical pain produced by 
the grill can be reduced by the NMDA ion channel antagonist ketamine, suggesting that 
NMDA receptor-mediated systems play a part in this thermal hyperalgesia. 
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also expressing TRPM8, but at lower level, have been 
suggested to lead to cold pain. NaV1·8, which is also 
expressed in high-threshold cells, might elicit a response  
in the cold pain channel.87,89 Under normal conditions, the 
participation of TRPA1 is not clear, but in experimental 
nerve injury, TRPA1 might act as a facilitator on 
TRPM8-expressing neurons, resulting in pain. Altern-
atively, TRPM8 and TRPA1 might be expressed in a so far 
unidentifi ed nociceptor type, causing pain.

Molecular mechanisms of cold allodynia and 
hyperalgesia
Several hypotheses exist for the mechanisms of cold 
allodynia and hyperalgesia. These include peripheral and 
central sensitisation, or central disinhibition, such as 
sensitisation of C nociceptors or Aδ fi bres (fi gure 5). Micro-
neurographic recordings in a patient with small-fi bre 
neuropathy and cold allodynia showed sensitisation to cold 
and menthol responsiveness of subtypes of C nociceptors,78 
which provides a potential explanation for cold allodynia. 
TRPM8 upregulation might explain this sensitisation. 
Although supported by animal studies,90 the role of TRPM8 
upregulation in human neuropathic pain is less clear,78 and 
patients with neuropathic pain with cold allodynia might 
have both increased91 and decreased92 sensitivity to menthol. 
Sodium channel dysfunction is another mechanism that 
could explain peripheral sensitisation. Changes in axonal 
excitability, indicating sodium channel dysfunction, have 
been documented in sensory neurons immediately after 
oxaliplatin infusion.93 In these patients, cold allodynia 
might therefore be due to increased excitability of cold-
sensitive neurons through changes in transient Na+ 
conductances. Additionally, ciguatoxins elicit cold allodynia 
via complex mechanisms, including activated sodium 
channels.77 Authors of experimental studies suggest that 
diff erent sodium channels are important. Whereas NaV1·7 
expression within the peripheral nervous system has been 
proved necessary for mechanical or cold-evoked responses 
in some models,94 this is not true for oxaliplatin-induced 
cold behaviour, in which NaV1·6 expression plays an 

essential part,94 as likewise found in an earlier study.95 The 
authors of studies in rodents have also implicated TRPA1 
receptors,96,97 potassium hyperpolarisation-activated cation 
channels,75,98 and calcium channels99 in cold allodynia and 
hyperalgesia. Additionally, central sensitisation of 
spinothalamic or cortical neurons caused by the same 
molecular mechanisms implicated in mechanical allodynia 
and hyperalgesia might underlie cold allodynia and 
hyperalgesia in both central and peripheral neuropathic 
pain.21,79,100

Blockade of Aδ fi bres during nerve compression101,102 or 
disease103 causes an increase in cold detection thresholds, 
a decrease in cold pain thresholds, and a change in the 
quality of cold sensation to icy, stinging, hot, and burning 
sensations. This is thought to result from disinhibition 
of C-polymodal nociceptive fi bres (heat-pinch-cold fi bres) 
by loss of Aδ fi bres104 and could provide an explanation 
for cold allodynia in neuropathic pain patients (fi gure 5). 
A similar mechanism has been proposed to explain cold 
allodynia in patients with central pain, in whom loss of 
central innocuous cold pathways or disruption of a 
thermosensory area in the insular cortex is proposed to 
disinhibit polymodal nociceptive activation of the 
anterior cingulate cortex (fi gure 5).81,105

The authors of a preclinical investigation found that 
peptidergic calcitonin gene-related peptide α-expressing 
sensory neurons sensitive to heat and itch tonically 
suppress cold sensitivity.106 These neurons were TRP ion 
channel V1 (TRPV1) positive, and the results are therefore 
consistent with the fact that activation of TRPV1 aff erents 
by capsaicin reduces sensitivity to cold and cold pain in 
human beings.107 Disruption of this crosstalk could 
unmask cold hypersensitivity and result in cold allodynia 
and increased TRPM8 activation activity, and therefore 
provides another possible central mechanism for cold 
allodynia and hyperalgesia in neuropathic pain.106

Heat allodynia and hyperalgesia
Heat stimuli are conducted via C fi bres and Aδ fi bres. 
The corresponding transduction receptors are the C fi bre 

Figure 5: Potential mechanisms for cold allodynia and hyperalgesia 
(A) Peripheral sensitisation of cold-sensitive C fi bres through abnormal expression or function of, for example, TRPM8 and TRPV1 receptors, or sodium, potassium, or calcium channels, can cause 
decreased thresholds and exaggerated responses to cold. (B) Peripheral sensitisation of Aδ fi bres might likewise cause cold allodynia and hyperalgesia. (C) Loss of peripheral Aδ fi bres or (D) of central 
innocuous cold pathways (eg, by disruption of a thermosensory area in the insular cortex) might disinhibit cold-sensitive polymodal nociceptive heat-pinch-cold-sensitive pathways, causing cold to be 
experienced as burning pain. Red represents sensitisation of fi bres, grey represents loss of fi bres, and blue represents normal fi bres in A–D. Blue areas show where a cold stimulus is applied. 
ACC=anterior cingulate cortex. INS=insular cortex. S1=primary somatosensory area. THAL=thalamus. 
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and A fi bre mechanoheat nociceptors, which respond to 
mechanical and heat stimuli. There seem to be two types 
of thermosensitive C nociceptors: one quickly adapting 
type that discharges during an increment of temperature 
and a more slowly adapting type that responds 
throughout a gradually maintained temperature 
increase.108 The key transducer in warm and heat pain-
responding neurons is TRPV1, the activity of which 
increases gradually with temperature.109 Other channels 
of the TRP family—ie, TRP ion channels V2–4—and 
purinergic receptors might also participate in the 
transduction of heat. Hyperalgesia to heat, which is 
prominent in infl ammatory disorders, can likewise be 
seen in neuropathic pain disorders. Such heat hyper-
algesia can be either peripherally or centrally mediated. 
Resiniferatoxin—a potent capsaicin analogue—produces 
long-lasting desensitisation of TRPV1 receptors110 and 
blocks heat but not tactile hypersensitivity in experimental 
nerve injury, suggesting that peripheral sensitisation of 
the nerve fi bres that express TRP channels plays a part in 
heat hyperalgesia.111

Heat hyperalgesia is probably likewise a result of 
central mechanisms and is present in 10% of patients 
with central pain.14 Hyperalgesia to laser stimuli in both 
peripheral and central neuropathic pain has been found 
to coexist with decreased, delayed, and desynchronised 
laser-evoked potentials.40,112 In some of these patients, the 
ultra-late components of heat-evoked potentials, which 
are described in healthy controls after C fi bre sensitisation 
and Aδ fi bre blockade,113 have been seen. Such responses 
have been hypothesised to show activation of a slowly 
conducting multisynaptic medial pain system because of 
either sensitisation or disinhibition.40

A classic example of heat hyperalgesia is inherited 
erythromelalgia—a condition characterised by bilateral 
severe burning pain in distal extremities, particularly the 
feet—associated with vasodilatation and reddening of the 
feet or hands.114 This condition, which is an autosomal 
dominant disorder, is caused by a missense mutation in 
the NaV1·7 channel, resulting in a reduction of the 
activation threshold.115 With microneurography, ectopic 
activity has been noticed in C fi bres from these patients, 
which represents one example of increased membrane 
excitability.116

In nerve injury, expression of the key heat transducer 
TRPV1 changes. TRPV1 is downregulated in injured 
nerve fi bres, but upregulated in uninjured fi bres,117,118 and 
has a de-novo expression in cells belonging to the 
Aδ and Aβ type.119 Taken together, these fi ndings suggest 
that both peripheral—via TRPV1-sensitised nociceptors—
and central mechanisms might have a role in the 
development and maintenance of heat hyperalgesia after 
damage to the nervous system. It can also be envisioned 
that the general lowering of thresholds to stimuli such as 
warm stimuli could lead to spontaneous activity, which 
could provide a mechanism for other sensory perceptions, 
such as sticking or burning sensations.

Modulation of allodynia and hyperalgesia 
Pharmacological treatment 
Pharmacological treatment is the mainstay of neuro-
pathic pain treatment. A series of compounds has been 
used to modulate neuropathic allodynia and other 
manifestations of neuropathic pain. These include drugs 
acting at voltage-gated and ligand-gated ion channels, 
metabotropic glutamate receptor ligands, opioids, 
cannabinoid receptor modulators, and glycine transporter 
inhibitors.120,121

Few trials have specifi cally addressed the treatment of 
evoked pain. Several randomised, double-blind, placebo-
controlled studies with the primary aim to study the eff ect 
of pharmacological treatment in neuropathic pain 
conditions have reported on the eff ect of the drug on 
allodynia or hyperalgesia, assessed by history, at the 
bedside, or by quantitative sensory testing. Dynamic 
mechanical allodynia to a brush or cotton swab is the 
outcome most often assessed, followed by hyperalgesia to 
pinprick and allodynia to cold. Allodynia or hyperalgesia 
was made an inclusion criterion in only a few studies, and 
most had too few patients with a specifi c type of evoked 
pain or the intensity was too low to be able to show an 
eff ect. Tricyclic antidepressants,122 serotonin-nore-
pinephrine reuptake inhibitors,123,124 gaba pentinoids,125–127 
opioids,128–132 cannabinoids,131 lamotrigine,132 mexiletine,133 
lidocaine gel,134 and botulinum toxin-A135 have been found 
to relieve dynamic mecha nical allodynia, cold allodynia, or 
pinprick hyperalgesia in diff erent peripheral and central 
neuro pathic pain conditions. The authors of studies with 
intravenous treatment additionally investigated the eff ect 
on diff erent types of evoked pain, and sodium channel 
blockers, opioids, NMDA antagonists, and propofol have 
shown eff ect on mechanical and cold allodynia.52,79,136–145

Studies have also been done to examine whether 
allodynia or hyperalgesia are predictors of overall 
treatment eff ect. Pinprick hyperalgesia predicted an 
overall eff ect of pregabalin in HIV polyneuropathy146 and 
dynamic mechanical allodynia or temporal summation to 
repetitive pinprick predicted the response to lamotrigine 
in spinal cord injury,147 whereas dynamic mechanical 
allodynia was a negative predictor of the overall eff ect of 
pregabalin in postherpetic neuralgia126 and levetiracetam 
in multiple sclerosis.148 These results were all based on 
posthoc analyses. Six intravenous treatment trials52,138–141,143 
were done to examine allodynia or hyperalgesia as 
predictors of overall pain-relieving eff ect, but only as a 
predefi ned outcome in one of them.139 In one study, static 
or dynamic mechanical allodynia predicted the response 
to intravenous lidocaine,141 whereas authors of the other 
studies failed to fi nd evoked pain to predict the response 
to lidocaine,52,138,139,143 morphine,140 or ketamine.52

Recently, a study was done to try to establish whether a 
reduction of spontaneous pain is matched by a similar 
reduction of evoked pain. In a group of patients with 
peripheral nerve injury pain and evoked pain who 
underwent a complete block of aff erent input to the CNS, 
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Existing drugs are rather non-specifi c in their mode of 
action.154 This non-specifi city limits the possibility of 
dissection of the underlying pathophysiologies. However, 
with novel and more specifi c drugs, these subtypes of 
allodynia and hyperalgesia could be used as additional 
endpoint measures in clinical trials.
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